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Abstract. We solve the puzzle of the disagreement between orthogonal polynomials methods and
mean-field calculations for random N × N matrices with a disconnected eigenvalue support. We
show that the difference does not stem from a Z2 symmetry breaking, but from the discreteness of
the number of eigenvalues. This leads to additional terms (quasiperiodic inN ) which must be added
to the naive mean-field expressions. Our result invalidates the existence of a smooth topological
large-N expansion and some postulated universality properties of correlators. We derive the large-
N expansion of the free energy for the general two-cut case. From it we rederive by a direct and
easy mean-field-like method the two-point correlators and the asymptotic orthogonal polynomials.
We extend our results to any number of cuts and to non-real potentials.

1. Introduction

Random matrix models have been introduced in order to give an approximate statistical
description for quantum systems involving disorder, chaos or complexity. In particular, they
allow a study of the level distribution and response to external fields. Those models are
described by a matrix (Hamiltonian, transfer matrix or scattering matrix) of large sizeN , which
is too complicated to be diagonalized exactly, and for which only statistical observations of
the spectrum are available (see [1, 2] for a review on random matrix theory (RMT)).

Most of the quantities of interest and observables are related to the short-range (in energy
scale) behaviour of the spectrum (indeed small energies correspond to long-time evolution, i.e.
to equilibrium thermodynamical properties). This is why the short-range correlation functions
are the most studied.

At first, the simplest models assumed a Gaussian weight for the random matrix and
gave good agreement with observations, provided that the ensemble of matrices (Hermitian,
orthogonal, quaternionic, etc) has the required symmetries (time reversibility, etc) [2, 3].

It has been conjectured [4], and observed experimentally [5] and numerically [6], that the
correlation functions of the spectrum possess universal properties at short range, which do not
depend on the probability weight, Gaussian or not. This universality has been proved for a
wide range of models by several approaches [3, 7, 8], though a very general proof and the exact
hypothesis which lead to it are still under investigations.

Moreover, the long-range correlation functions appear to also share some universal
properties, which depend on the probability weight, only through a few parameters [7, 9].
The most striking example is the two-point correlation function that we shall discuss below.

0305-4470/00/386739+30$30.00 © 2000 IOP Publishing Ltd 6739
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In the following we will restrict our attention to the so-called Hermitian one-matrix-model†
[2, 10] (Hermiticity corresponds to a system with broken time reversibility, for instance in the
presence of a magnetic field).

We consider a Hermitian matrix M of size N ×N with a probability law of the form

P(M) = e−N tr V (M)

where V is a polynomial potential bounded from below.
We wish to study the statistical properties of the eigenvalues (λ1, . . . , λN)ofM in the large-

N limit, in particular, the density of eigenvalues ρ(λ) and the correlation function R(λ,µ),
which measures the probability that two of the eigenvalues take the values λ and µ.

Roughly speaking, the eigenvalues tend to occupy a finite interval centred around the
bottom of the potential well, and in the large-N limit, the density of eigenvalues ρ(λ) is a
continuous function with a compact support.

The simplest case, where the support is connected, known as the ‘one-cut case’, has been
studied extensively [2]. It is found that the density ρ(λ) is not universal, but depends on the
details of the potential V , while the connected correlation function Rc(λ, µ) is universal in the
short-range regime (|λ− µ| ∼ O(1/N)), but also in the long-range regime (|λ− µ| ∼ O(1))
once the short-range oscillations (of period ∼ O(1/N)) have been smoothed out.

What happens when the potential V possesses several wells, of approximately the same
depths? Then the density ρ(λ) has a disconnected support, [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [as, bs],
each interval [ai, bi] being centred around one well of the potential V . This case is known as
the multicut (or multiband) case (here s cuts).

In the multicut case the density is still not universal, whereas the two-point correlation
function is universal in the short-range regime and seems to have some universal properties
in the long-range regime after smoothing: in [11] an explicit form of the two-point connected
correlation function was given, and is claimed to be universal: indeed, according to the authors
of [11] ‘it depends only on the number of connected components of the support and on the
position of the endpoints, but not on the potential’. However, more recently several authors
[12–15] have studied the two-cut case s = 2: they concentrated on the case of an even
potential V (the two cuts are thus symmetric [a, b] and [−b,−a]). Using an ansatz for the
asymptotic expression of orthogonal polynomials in the large-N limit, and rederiving the two-
point function from this ansatz, they observed that the connected correlation function is still
universal in the short-distance regime (which was expected), but more surprisingly, that the
smoothed connected correlation function in the long-range regime depends on the parity of N
(N being the size of the matrix). This seems to contradict the former result of [11]!

In this paper, we will solve this paradox.
We will show that the semiclassical method of [11] gives the two-point connected

correlation function only up to an additional non-universal term, which is already present
in the free energy, but subdominant at large N in this case. We correct the semiclassical
argument of [11] and give a simple (and physically appealing) derivation of the origin of the
additional term, that we compute explicitly. This allows us to recover the results of [13, 15]
for the symmetric case, and to generalize them to non-symmetric potentials, without using
orthogonal polynomials.

Using the same semiclassical argument, we are able to derive large-N asymptotics for
the orthogonal polynomials, recovering the results of [13, 15] as well as the general s cuts
asymptotics which appeared recently in the mathematical literature [17], and to extend these
results to the case of complex potentials.

† The other ensembles are of course worth considering, but this one is the simplest.
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The effect leading to the new term in the semiclassical calculation is simple enough to be
explained briefly in this introductory section.

In [11], the free energy F of the matrix model is derived by a saddle-point approximation.
In particular, one has to extremize the action with respect to variations of the number ni
(i = 1, . . . , s) of eigenvalues in each connected part of the support, or, in other words, with
respect to the occupation ratio xi = ni/N :

F = F(xc) where
∂F

∂x

∣∣∣∣
x=xc

= 0. (1.1)

However, here one has missed the crucial fact that ni = Nxi are not real numbers but integers.
When Nxc is not an integer, the extremum of F(x) is never reached, and the saddle-point
approximation has to be slightly modified. Roughly speaking the discrete sum cannot be
approximated by an integral:∑

n

e−g(n−Nxc)2 �=
∫

dx e−N2g(x−xc)2 . (1.2)

The discrete sum actually depends on how far from an integer Nxc is. For instance, in the
symmetric case, we have xc = 1

2 , and the result depends on the parity of N .
We will show that (as expected from equation (1.2)), in general, the result involves elliptic

theta functions depending on Nxc, thus leading to a quasi-periodic dependence on N . This
effect is of order N−2 for the free energy, but is of order one for the computation of the
orthogonal polynomials and for the correlation functions. It implies, in particular, that there is
no regular large-N topological expansion (involving only power series inN−2) for the two-cut
matrix model. This should not come as a surprise, indeed ’t Hooft’s argument [10, 16] is not
valid in this case, since it relies on a perturbative expansion around a quadratic potential, which
can never have several wells.

We will find that the short-range correlation function is universal, while the long-range
smoothed correlation depends on N quasi-periodically.

The paper is divided as follows. In section 2 we introduce the method and notation for the
two-cut model, and we compute the free energy. In section 3 we derive the two-point correlation
function, and we recover the expression of [13, 15, 17] in the symmetric case. In section 4, we
give an asymptotic expression for the orthogonal polynomials, which we use to rederive the
universal short-range properties of the spectrum, as well as the smoothed long-range two-point
correlation function.

The generalizations to a complex potential or to an arbitrary number of cuts are presented
in appendices B and C. Appendix A contains some technical details and appendix B is a
summary of some relationships between elliptical functions in case the reader is not familiar
with them.

2. The free energy

2.1. Basics

We start from the standard Hermitian matrix model defined by the partition function

Z[V ;N ] =
∫

dN [M] e−N tr V (M) (2.1)

where N is the dimension of the matrix M , V is an analytic—in general, polynomial—and for
the moment real–function, and dN [M] is the standard U(N) invariant measure over Hermitian
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matrices

dN [M] =
N∏
i=1

dMii

∏
1�i<j�N

2 d Re(Mij ) d Im(Mij ). (2.2)

Integrating out the ‘angular part’ ofM ,Z can be rewritten as an integral over theN eigenvalues
λ1, . . . , λN of M [2]

Z[V ;N ] = CNZ̃[V ;N ] (2.3)

Z̃[V ;N ] =
∫ N∏

k=1

dλk e−N∑
k V (λk)

∏
k<l

(λk − λl)
2 =

∫ N∏
k=1

dλk e−N2S(λ1,...,λN ) (2.4)

with the measure factor

CN = Vol

[
U(N)

U(1)N × SN

]
= 1

N !

N∏
K=1

(2π)K−1

!(K)
(2.5)

and with the action S(λk)

S(λ1, . . . , λN) = 1

N

N∑
k=1

V (λk)− 1

2N2

∑
1�k �=l�N

ln (λk − λl)
2. (2.6)

In the simplest ‘one-cut’ case, corresponding in particular to a concave potential, it is known
[10] that the free energy F defined as†

Z[V ;N ] =
(

2π

N

)N2/2

e−F [V ;N ] (2.7)

has a topological large-N expansion

F = N2F0 + F1 + N−2F2 + · · · (2.8)

obtained for instance by reorganizing the perturbative expansion according to the topology
of the Feynmann diagrams. The large-N limit (planar limit) can be described by a ‘master
field’ configuration where the eigenvalues are described by a continuous density ρ(λ) with a
connected compact support C = [a, b], with the constraints∫

C
dλ ρ(λ) = 1 and ρ(λ) � 0 if λ ∈ C (2.9)

and the action (2.6) becomes

S[ρ] =
∫

C
dλV (λ)ρ(λ)−

∫
C×C

dλ dµρ(λ)ρ(µ) ln |λ− µ|. (2.10)

The leading term of the free energyF0 can be obtained by the saddle-point method: the effective
action S[ρ] is extremized for a continuous distribution ρc and we have simply

F0 = S[ρc] (2.11)

(up to an additive (potential-independent) constant). To compute ρc we include the constraint
(2.9) in the effective action by a Lagrange multiplier !

S̄[ρ] = S[ρ] + !

(
1 −

∫
C
ρ

)
. (2.12)

† Z is normalized here so that F is zero for the Gaussian model V = 1
2M

2
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The saddle-point equation for ρ reads as

∂S̄

∂ρ(λ)
= V (λ)− 2

∫
C

dµρ(µ)ln(|λ− µ|)− ! = 0 ∀ λ ∈ C (2.13)

which simply means that the real part of the effective potential

Veff(λ) = V (λ)− 2
∫

C
dµρ(µ) ln (λ− µ) (2.14)

is constant on the EV support C, and equal to !. The derivative of (2.13) with respect to λ
gives the well known equation

Re(ω0(λ)) =
∫
−

C
dµρ(µ)

1

λ− µ
= V ′(λ)/2 ∀ λ ∈ C (2.15)

where ω0 is the large-N resolvent

ω0(λ) = lim
N→∞

〈
1

N
Tr

[
1

λ−M

] 〉
=
∫

C
dµ

ρ(µ)

λ− µ
. (2.16)

Finally, let us recall that in the one-cut case C = [a, b], if the potential V is a polynomial of
degree P , ω is of the form

ω0(λ) = 1
2V

′(λ)− 1
2M(λ)

√
σ(λ) with σ(λ) = (λ− a)(λ− b) (2.17)

where M(λ) is a polynomial with degree P − 2. a, b and M are entirely determined by the
constraint that

ω0(λ) = λ−1 + O(λ−2) for λ → ∞. (2.18)

The EV density is given by the discontinuity of ω

ρ(λ) = i

2π
[ω(λ + i0+)− ω(λ− i0+)] = M(λ)

√|σ(λ)|
2π

. (2.19)

2.2. The two-cut case

2.2.1. Mean field. If the potential V is real but has more than one minimum, the large-N
limit may be described by an EV distribution on several disconnected intervals. For simplicity
we shall first consider the case where there are two intervals

C = C1 ∪ C2 C1 = [a, b] C2 = [c, d] a < b < c < d. (2.20)

In this case, as we shall see, there is no topological large-N expansion, even for the free energy
F . As shown in [18, 19], to describe the large-N limit, we have to consider as an additional
variable the ‘average’ proportion of eigenvalues x1 = n1/N and x2 = n2/N in each interval
C1 and C2, and introduce the associated Lagrange multipliers !1 and !2 for the constraints

xα =
∫

Cα
ρ(λ) dλ α = 1, 2. (2.21)

The effective action (2.12) now reads, with

x = x1 (2.22)

S̄[ρ; x] = S[ρ] +
2∑

α=1

!α

(
xα −

∫
Cα
ρ(λ) dλ

)
x1 + x2 = 1 (2.23)
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with S[ρ] given by (2.10) as before. The saddle-point equation with respect to ρ(λ) gives
as before the equation (2.13), which implies that the effective potential defined by (2.14) is
constant on each interval

Veff(λ) = !α when λ ∈ Cα (2.24)

but the corresponding EV density ρc(λ) and the effective action S̄c still depend explicitly on
the EV proportion x, since we have

S̄c[x] = 1
2

(∫
C
ρc(λ)V (λ) dλ +

∑
α

!αxα

)
. (2.25)

The saddle-point equation with respect to x implies the equality of the effective potentials for
each interval

∂S̄

∂x
= !1 − !2 = 0. (2.26)

This fixes the value of x, and it is known that with this last equation the EV density ρc is
uniquely determined in the two-cut case. The large-N free energy is then given simply by

F0 = S̄[ρc; xc] = S̄c[xc]. (2.27)

For an explicit polynomial potential V of degreeP , and for fixed x, the two-cut mean-field
solution for the resolvent is

ω0(λ, x) = 1
2V

′(λ)− 1
2M(λ)

√
σ(λ) with σ(λ) = (λ− a)(λ− b)(λ− c)(λ− d)

(2.28)

and M(λ) a polynomial with degree P − 3. The EV density ρ(λ, x) is still given by the
discontinuity of ω0. The coefficients of M and the four end-points a, b, c, d are entirely
determined by the constraint that ω0(λ) � λ−1 when λ → ∞ and by the fact that x must be
given by

x =
∫ b

a

ρ(λ, x) dλ = 1

2π

∫ b

a

|M(λ, x)|
√

|σ(λ)| dλ. (2.29)

Finally, the equation (2.26) which fixes x = xc reads

0 = Veff(b)− Veff(c) =
∫ c

b

dλ
(
2ω0(λ, x)− V ′(λ)

) = −
∫ c

b

dλM(λ, x)
√

|σ(λ)|. (2.30)

2.2.2. Discreteness of number of EVs. This is sufficient if one is interested in the leading term
in the large-N limit (planar approximation). However, in order to understand the structure of
the subdominant terms of the large-N expansion, it turns out that we cannot neglect the fact
that the number of EV nα = Nxα in each interval Cα must be an integer.

We consider the simple case where the potential V is such that the support of the
eigenvalues consists of two intervals. For simplicity we assume that the potential V (z) has
only two separate minima z1 and z2, though our argument is independent of the number of
minima of V , but depends only on the number of intervals.

What has to be done is first to fix the number of eigenvalues n1 = n (respectively,
n2 = N − n) in the vicinity of z1 (respectively, z2) in the partition function (2.5) by writing

Z̃[V ;N ] =
N∑
n=0

N !

n!(N − n)!
Z̃[V ; n,N − n] (2.31)
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where

Z̃[V ; n,N − n] =
∫ E

−∞

∏
i�n

dλi

∫ +∞

E

∏
j>n

dλj e−N∑
k V (λk)

∏
k<l

(λk − λl)
2 (2.32)

with E a ‘frontier’, b < E < c, between the two semiclassical cuts [a, b] and [c, d]. We now
claim that each term of this discrete sum has a well defined large-N topological expansion.
Indeed, we can rewrite (2.32) as a matrix integral over two separate matrices: an n1 ×n1 matrix
M1 with the n1 = n EV <E and an n2 × n2 matrix M2 with the n2 = N − n EV >E, as

Z̃[V ; n] = 1

CnCN−n

∫
dn1

[M1]
∫

dn2
[M2] e−N Tr(V (M1))−N Tr(V (M2))+2 Tr(ln(M1⊗Id−Id⊗M2)).

(2.33)

This last matrix integral has a topological large-N expansion of the form (2.8) in the ’t Hooft
limit N → ∞, x = n/N fixed. This expansion is obtained by doing a classical perturbative
expansion around the smallest minimum z1 of V for M1 and around the largest minimum z2

of V for M2, and by reorganizing the perturbative expansion according to the topology of the
Feynmann diagrams, as usual (see appendix A for details). Taking into account carefully the
measure factors Cn and CN−n, and using their large-N asymptotics

CN = 1

N !

(
2π

N

)N2/2

e
3
4N

2
(2π)−NN1/12 cst (1 + O(N−1)) when N → ∞ (2.34)

(easily derived from the Stirling formula), we obtain that

Z[V ;N ] =
(

2π

N

)N2/2

N−1/12
N∑
n=0

e−F [V ;N,x] (2.35)

where each F [V ;N, x] has a regular large-N asymptotic expansion of the form

F [V ;N, x] =
∞∑
h=0

N2−2hFh[V, x] where x = n/N (2.36)

with each Fh[V, x] a regular function of x = n/N . In particular, the leading large-N term is
given (up to an additive, V and x independent, constant) by the classical effective action (2.27)

F0 = S̄[ρc; xc] = S̄c[xc]. (2.37)

Finally, let us stress that although this decomposition depends on the arbitrary parameter E,
since E is in the interval ]b, c[ where the density of eigenvalues is exponentially small with
N , the integral (2.32) depends on E only through exponentially small terms of order e−cst·N ,
which are ‘non-perturbative’ in the topological expansion equation (2.36).

2.2.3. Beyond mean field. We can now easily calculate the subleading terms of order O(N−2)

for the full partition function. In the large-N limit we can approximate the sum (2.36) by

Z[V ;N ] ∝
N∑
n=0

e−N2F0[V ;x]−F1[V ;x]+···. (2.38)

If xc denotes the saddle point of F0[x] given by (2.26), the sum is dominated by the ns such
that

|n−Nxc| = O(1). (2.39)
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Thus we can still use a quadratic approximation for F0[x]

Z[V ;N ] ∝ e−(N2F0[V ;xc]+F1[V ;xc]+···)
∑
n

e−(n−Nxc)2F ′′
0 [V ;xc]/2 (2.40)

where F ′′
0 = ∂2F0/∂x

2 and where the · · · represent terms of order O(N−2). The last sum over
n gives simply an elliptic Jacobi theta function θ3∑

n

e−(n−Nxc)2F ′′
0 [V ;xc]/2 = (

2πF ′′
0 [V ; xc]

)−1/2
θ3(Nxc|τ) (2.41)

with modular parameter τ given by

τ = 2iπ

F ′′
0 [V ; xc] (2.42)

and where the theta function is defined as

θ3(z|τ) = θ3(z) =
∑
n∈Z

qn
2
e2iπnz with q = eiπτ . (2.43)

It obeys the periodicity relations

θ3(z + 1) = θ3(z) θ3(z + τ) = e−iπ(2z+τ)θ3(z). (2.44)

(For details on elliptic functions see, e.g., [26–28].) Eventually, we have for the free energy

F [V ;N ] = N2F0[V, xc] − ln (θ3(Nxc)) + F1(V ; xc) + 1
2 ln

(
2πF ′′

0 [V ; xc]
)

+ O(N−2)

(2.45)

where F1 is the torus contribution in the topological expansion of (2.33). The next terms of
this expansion can be calculated along the same line.

Let us stress that this is not a topological expansion, since the second term ln (θ3(Nxc)),
seemingly O(1) and contributing at the torus order, is not regular in N . Indeed, it is periodic
in xc with period 1/N . When computing some observables or quantities of the matrix model,
one must take derivatives of F with respect to some parameters of the potential V . Since the
saddle point xc depends implicitly on V , every derivative will give a factor N , and this term
may become of the same order as the first term N2F0[xc] given by the planar limit. Note that
the last two terms depend on x and not on Nx, and they will remain subdominant once we
take derivatives of F .

2.3. The modular parameter

Finally, we can express the modular parameter τ defined by equation (2.42) simply in terms
of the end-points a, b, c, d of the support of EV For this purpose, we introduce the function σ

σ(λ) = (λ− a)(λ− b)(λ− c)(λ− d) (2.46)

and the function u

u(λ) = 1

2K

∫ λ

d

dz√
σ(z)

(2.47)

where K is

K =
∫ c

b

dz√|σ(z)| = 2√
(c − a)(d − b)

K[m] with m = (d − a)(c − b)

(d − b)(c − a)
(2.48)
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and K[m] is the complete elliptic integral of the first kind. Similarly, we define

K ′ =
∫ b

a

dz√|σ(z)| = 2√
(c − a)(d − b)

K[m′] with m′ = 1 −m. (2.49)

We shall show that the modular parameter τ of equation (2.42) coincides with the standard
modular parameter of the torus associated with the mapping u, i.e. of the elliptic curve
y2 = σ(z). Indeed, τ is simply given by

τ = i
K ′

K
= i

K[1 −m]

K[m]
. (2.50)

So we have

u(d) = 0 u(a) = 1
2 u(b) = 1

2 (1 + τ) u(c) = 1
2τ u(∞) = u∞ (2.51)

and (see figure 1) umaps the upper half λ-plane onto the half-periods rectangle (1/2, τ/2) and
the double-sheeted complex λ-plane onto the period rectangle (1, τ ).

Figure 1. The upper half-plane is mapped onto a rectangle ( 1
2 ,

1
2 τ ).

To show equation (2.50), we use the fact that in the two-cut case, if we fix x (the EV
ratio in the first cut) the semiclassical EV density (extrema of the effective action S̄) is now a
function ρ(λ, x) of λ and x, and the end-points a, b, c, d depend on x. Therefore, the large-N
resolvent ω0 is of the form

ω0(λ, x) = 1
2V

′(λ)− 1
2M(λ, x)

√
σ(λ) (2.52)

with M(λ, x) a polynomial with degree P − 3 in λ (P being the degree of V ), entirely fixed
by the constraints (2.18) and (2.29). Therefore, the partial derivative of ω0(λ, x) with respect
to x is necessarily of the form

∂ω0(λ, x)

∂x
= C√

σ(λ)
(2.53)

with C = C(λ, x) a priori a polynomial in λ. Since (2.18) still holds independently of x we
must have

∂ω0(λ, x)

∂x
= O(λ−2) for λ → ∞ (2.54)

which implies that C(λ, x) is of degree zero in λ, i.e. is a constant (depending only on x)

C = C(x). (2.55)

This constant can be easily determined by using that

x =
∫ b

a

ρ(λ, x) dλ =
∫

C′

dλ

2iπ
ω0(λ, x) (2.56)
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with C′ a clockwise contour encircling the interval [a, b]. Therefore, we have

∂x

∂x
= 1 =

∫
C′

dλ

2iπ

C√
σ(λ)

= −CK ′

π
⇒ C = − π

K ′ (2.57)

with K ′ the half-period defined in equation (2.49). Now we use equations (2.26), (2.27) and
the definition of the effective potential Veff of equation (2.14) to write the derivative of the free
energy with respect to x as

∂F0

∂x
= Veff(b)− Veff(c) =

∫ c

b

dλ (2ω0(λ)− V ′(λ)). (2.58)

Now we take the derivative with respect to x of this equation and obtain

F ′′
0 = ∂2F0

∂x2
= 2

∫ c

b

dλ
∂ω0(λ)

∂x
= 2

∫ c

b

dλ
C√
σ(λ)

= −2CK = 2πK

K ′ . (2.59)

Using equation (2.42) we thus obtain the result (2.50).

3. Two-point correlation function

3.1. The basic formula

As a first application we compute the large-N smoothed connected two-point correlation
function (first obtained by [13, 15, 17]), defined as

ωc(λ, µ) =
〈

Tr

[
1

λ−M

]
Tr

[
1

µ−M

] 〉
−
〈

Tr

[
1

λ−M

] 〉〈
Tr

[
1

µ−M

] 〉
. (3.1)

Adding source terms to the potential of the form

Vελ = V (z)− ελ
1

λ− z
Vελ,εµ(z) = V (z)− ελ

1

λ− z
− εµ

1

µ− z
(3.2)

we have

ωc(λ, µ) = − 1

N2

∂

∂ελ

∂

∂εµ
F [Vελ,εµ , N ]

∣∣∣∣
ελ=εµ=0

(3.3)

and for the resolvent (one-point function)

ω(λ) = 1

N

〈
Tr

[
1

λ−M

] 〉
= − 1

N2

∂

∂ελ
F [Vελ, N ]

∣∣∣∣
ελ=0

. (3.4)

If the ελs are small and the λs are not too close to the cuts, the mean-field solution is still a
two-cut EV distribution, with xc = xc(ε) an explicit function of the λs. So from equation (2.45)
for the free energy we have for the two-point function

ωc(λ, µ) =
[
− ∂

∂ελ

∂

∂εµ
F0[Vελ,εµ ] +

∂xc

∂ελ

∂xc

∂εµ
[ln (θ3(Nxc))]

′′
]
ελ=εµ=0

+ O(N−1). (3.5)

The first term in the right-hand side of (3.5) is the mean-field contribution already calculated
in [11, 20], the second term involving a second derivative of an elliptic function, characterizes
the multi-cut solution.
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3.2. The mean-field contribution

For completeness let us first rederive the mean-field contribution of [11, 20]. Taking the
derivative with respect to ελ we obtain the mean-field resolvent for the potential Vεµ

− ∂

∂ελ
F0[Vελ,εµ ]

∣∣∣∣
ελ=0

= ω0(λ;Vεµ) (3.6)

which must be of the form

ω0(z;Vεµ) = 1

2

[
V ′(z)− εµ

(z− µ)2
+
M(z)

√
σ(z)

(z− µ)2

]
(3.7)

with M(z) a polynomial of degree P − 1 (here both the coefficients of M and of σ depend on
µ and εµ). In addition to the P − 2 constraints (coming from (2.18) and (2.30)) ω0(z;Vεµ)
must be regular at z = µ. This determines M entirely. Taking the derivative with respect to
εµ and using the symmetry λ ↔ µ we obtain

ωc
0(λ, µ) = − ∂

∂ελ

∂

∂εµ
F0 = −1

2

1

(λ− µ)2

[
1 +

Q(λ,µ)√
σ(λ)

√
σ(µ)

]
(3.8)

with Q(λ,µ) a symmetric polynomial in λ and in µ. The constraints on ωc
0 are:

(a) ωc0 = O(λ−2) as λ → ∞ which implies that Q is of degree at most two;
(b) ωc

0 is regular at λ = µ which implies that Q(λ,µ) = −σ((λ + µ)/2) + O((λ− µ)2);
(c) finally, the equality of the effective potential on the two cuts implies that∫ c

b

ωc
0(λ, µ) dµ = 0. (3.9)

Conditions (a) and (b) fix uniquely Q

Q(λ,µ) = −1

2

[
(λ− a)(µ− b)(µ− c)(λ− d)

+(µ− a)(λ− b)(λ− c)(µ− d)

]
+ S(λ− µ)2 (3.10)

up to a constant S fixed by condition (c), which is found to be

S = −1

2
(c − a)(d − b)

E[m]

K[m]
with m = (c − b)(d − a)

(c − a)(d − b)
(3.11)

and where K[m] and E[m] are the standard elliptic integrals of the first and second kind.

3.3. The non-regular contribution

In order to compute the second contribution to (3.5), we simply need ∂xc
∂ελ

. Since xc is fixed by

the constraint ∂F0
∂x

= 0 we can write

∂xc

∂ελ
= − ∂2F0

∂x∂ελ

/
∂2F0

∂x2
. (3.12)

Using the results of subsection 2.3 we have

∂2F0

∂x2
= 2πK

K ′ and
∂2F0

∂x∂ελ
= − ∂

∂x
ω0(λ, x) = π

K ′
1√
σ(λ)

. (3.13)
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So we have eventually

∂xc

∂ελ
= − 1

2K
√
σ(λ)

(3.14)

and the second non-regular term is

∂xc

∂ελ

∂xc

∂εµ
[ln (θ3(Nxc|τ))]′′ = 1

2K
√
σ(λ)

1

2K
√
σ(µ)

[ln (θ3(Nxc|τ))]′′ (3.15)

with K defined by equation (2.48). Using standard relations on elliptic functions, this can be
rewritten as

(c − a)(d − b)

4
√
σ(λ)

√
σ(µ)

[
−E[m]

K[m]
+ dn2(Nxc + 1

2 )

]
(3.16)

with

dn(u) = dn(2K[m]u|m) (3.17)

where dn(u|m) is the Jacobi elliptic function dn. Its periods are 2K[m] and 4iK[m′], and
dn2(z) has periods 1 and τ .

3.4. The final result

Combining (3.8), (3.10), (3.11) and (3.16) we obtain the final result for the two-point correlation
function

ωc(λ, µ) = − 1

4(λ− µ)2

[(
1 −

√
(λ− a)(λ− b)(µ− c)(µ− d)

(µ− a)(µ− b)(λ− c)(λ− d)

)
+ (λ ↔ µ)

]

− (c − a)(d − b)

4
√
σ(λ)

√
σ(µ)

sn2(Nxc + 1
2 ). (3.18)

We have used the relation dn2(u) = 1 −m sn2(u), where similarly to (3.17) we note

sn(u) = sn(2K[m]u|m). (3.19)

Surprisingly, the ratio E[m]/K[m] characteristic of the mean-field solution of [11, 20] has
disappeared.

The smoothed two-point connected density correlator ρc(λ, µ), defined as

ρc(λ, µ) = 〈Tr [δ(λ−M)] Tr [δ(µ−M)]〉 − 〈Tr [δ(λ−M)]〉〈Tr [δ(µ−M)]〉 (3.20)

can be obtained easily from the discontinuity of ωc(λ, µ). One obtains in the large-N limit, if
λ and µ are on the support of EV

ρc(λ, µ) = − 1

4π2

[
1

(λ− µ)2

(√∣∣∣∣ (λ− a)(λ− b)(µ− c)(µ− d)

(µ− a)(µ− b)(λ− c)(λ− d)

∣∣∣∣ + λ ↔ µ

)

+ελεµ
(c − a)(d − b)√|σ(λ)|√|σ(µ)| sn2(Nxc + 1

2 )

]
(3.21)

ελ = 1 if λ ∈ [a, b] −1 if λ ∈ [c, d] (3.22)

and zero otherwise.
The new non-regular term sn2(Nxc + 1

2 ) is an even periodic function of Nxc with period
1 which varies between 0 and 1. Therefore, as N varies, depending on the rationality or the
irrationality of xc, the two-point function will be varying with N in a periodic or quasiperiodic
way.
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3.5. The symmetric case

It is now very easy to recover the results of [13, 15] for a symmetric potential. Indeed, if the
potential V is symmetric, the two cuts are also symmetric

a = −d b = −c (3.23)

and we have automatically

xc = 1
2 (3.24)

so that

sn2(Nxc + 1
2 ) =

{
sn2( 1

2 ) = 1 if N is even

sn2(0) = 0 if N is odd.
(3.25)

Equations (3.18) and (3.22) become

ωc(λ, µ) = − 1

2(λ− µ)2

[
1 − (a2 − λµ)(b2 − λµ)√

σ(λ)
√
σ(µ)

]
− (−1)N

2

ab√
σ(λ)

√
σ(µ)

(3.26)

ρc(λ, µ) = 1

2π2

ελεµ√|σ(λ)|√|σ(µ)|
(
(a2 − λµ)(b2 − λµ)

(λ− µ)2
− (−1)Nab

)
(3.27)

with σ(λ) = (λ2 − a2)(λ2 − b2).

3.6. The two-point function as an elliptic function

It is interesting to consider the two-point correlator in terms of the elliptic coordinates defined
by equation (2.47)

u = u(λ) v = u(µ). (3.28)

Let us thus consider

ω̄c(u, v) = ∂λ

∂u

∂µ

∂v
ωc(λ, µ) = 2K

√
σ(λ)2K

√
σ(µ)ωc(λ, µ). (3.29)

It is easy to see (from the properties of ωc) that ω̄c(u, v) satisfies:

(a) ω̄c(u, v) is a doubly periodic function of u (and of v) with periods 1 and τ ;
(b) ω̄c(u, v) is regular at u and v = u(a), u(b), u(c), u(d) and u∞;
(c) ω̄c(u, v) is regular when u = v, but has a double pole at u = −v (corresponding to the

double pole of ωc(λ, µ) when λ = µ but with λ in the first sheet and µ in the second
sheet), with residue 1.

This implies that ω̄c(u, v) is a Weirstrass elliptic function

ω̄c(u, v) = ℘(u + v|τ) + constant (3.30)

where the constant depends onNxc (℘ has periods 1 and τ ). Using classical identities between
the Weirstrass ℘ function and the Jacobi elliptic functions, it can be easily calculated. We find
the remarkably simple result

ω̄c(u, v) = ℘(u + v|τ)− ℘(Nxc + 1
2τ |τ) (3.31)

or equivalently

ω̄c(u, v) = − [ln (θ1(u + v|τ))]′′ + [ln (θ3(Nxc|τ))]′′. (3.32)
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4. The orthogonal polynomials

Let us briefly recall some basic facts about the well known method of orthogonal polynomials
[21], which is a powerful tool for studying the spectral properties of random matrices [2].
Asymptotic expressions for the orthogonal polynomials have been obtained recently [17] in
the mathematical literature, by solving a Rieman–Hilbert problem. Here we will derive them
from the free energy directly.

Consider the partition function (2.4):

Z̃ =
∫

dλ1 . . . dλN e−N∑
i V (λi )

∏
i<j

(λi − λj )
2. (4.1)

The last term is a Vandermonde determinant [2]:∏
i<j

(λi − λj ) = det
i,j

(
(λi)

j−1
) = det

i,j

(Pj−1(λi)
)

(4.2)

where the last equality is obtained by linearly mixing columns of the determinant, and holds
for arbitrary monic polynomials Pn(λ) with leading coefficient Pn(λ) = λn + · · · .

The method of orthogonal polynomials consists of choosing a family of polynomials
suitable for the computation of (4.1), namely, the family of polynomials orthogonal with
respect to the weight exp [−NV (λ)]:∫

dλPn(λ)Pm(λ) e−NV (λ) = hnδnm. (4.3)

With this particular choice of polynomials, the integral (4.1) is merely

Z̃ = N !
N−1∏
n=0

hn (4.4)

and the joint probability density of all the eigenvalues takes the form of a Slater determinant:

RN(λ1, . . . , λN) = 1

N !


 det

0�n<N

1�i�N

[
ψn−1(λi)

]
2

(4.5)

where the wavefunctions ψn(λ) = 1√
hn

Pn(λ) e− 1
2NV (λ) are orthonormal.

4.1. The Kernel K(λ,µ)

The square of a determinant can be rewritten as the determinant of a product:(
det
n,i

(ψn−1(λi))

)2

= det
1�i,j�N

[ N−1∑
n=0

ψn(λi)ψn(λj )

]

we are thus led to introduce the kernel K(λ,µ) [22]:

K(λ,µ) = 1

N

N−1∑
n=0

ψn(λ)ψn(µ). (4.6)

In terms of which the joint density of eigenvalues is now a determinant

RN(λ1, . . . , λN) = NN

N !
det

[
K(λi, λj )

]
. (4.7)
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The orthonormality properties of the polynomials imply the projection relations∫
dλK(λ, λ) = 1 and

∫
dλK(µ, λ)K(λ, ν) = 1

N
K(µ, ν) (4.8)

which make any partial integration of (4.7) easy to perform (theorem of Dyson [23]).
In particular, the integration over N − 1 eigenvalues gives the density of eigenvalues

ρ(λ1) =
∫

dλ2 . . . dλN RN(λ1, . . . , λN) = K(λ1, λ1)

and the integration over N − 2 eigenvalues gives the correlation function

R2(λ1, λ2) =
∫

dλ3 . . . dλN RN(λ1, . . . , λN)

= N

N − 1
(K(λ1, λ1)K(λ2, λ2)−K(λ1, λ2)K(λ2, λ1)).

In short,

ρ(λ) = K(λ, λ) ρ(λ, µ) = (
K(λ, λ)K(µ,µ)−K(λ,µ)2

)
. (4.9)

In addition, the Darboux–Christoffel theorem [24, 27], asserts that

K(λ,µ) = 1

NhN−1

PN(λ)PN−1(µ)− PN(µ)PN−1(λ)

λ− µ
e− 1

2N(V (λ)+V (µ)) (4.10)

which means that we need to evaluate Pn only for n = N and n = N − 1.
Thus, we shall now aim at finding asymptotic expressions for the orthogonal polynomials

Pn(λ), and the kernel K(λ,µ) in the large-N limit, and n close to N . This has been done in
the one-cut case [7] and in the symmetric two-cut case [13, 14, 17]. Here we will generalize it
to the non-symmetric case, with the method used in [24].

4.2. WKB approximation for the orthogonal polynomials Pn(λ)

The orthogonal polynomials have the following integral representation (see appendix 1 of [24]
or [21]):

Pn(λ) =
∫

dMn×n det (λ−M) e−N tr V (M)∫
dMn×n e−N tr V (M)

(4.11)

where the integral is restricted to Hermitian matrices of size n× n.
Thus the orthogonal polynomial is given by the ratio of two matrix integrals of the same

type as the partition function (2.1):

Pn(λ) = Z[V + δV1 + δV2; n]

Z[V + δV1; n]
= e−F [V +δV1+δV2;n]

e−F [V +δV1;n]
(4.12)

where

δV1(z) = N − n

n
V (z) and δV2 = −1

n
ln (z− λ). (4.13)

We have seen in the previous section (equation (2.45)) that

F [V ; n] = n2F0[V ; xc] − ln θ3(nxc[V ]) + · · · . (4.14)
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We will use the fact that under a variation δV of the potential, the variation of F0 is [9, 24]:

δF0 = 1

2iπ

∮
ω(z)δV (z) dz (4.15)

where the anticlockwise contour encloses the support of the density of eigenvalues and ω(z)
is the resolvent (equation (3.4) and (2.28)):

ω(z) = 1
2

(
V ′(z)−M(z)

√
σ(z)

)
.

It is convenient to introduce two sources t1 and t2 for the variations δV1 and δV2 of the
potential, and consider a generalized potential V(z):

V(z) = V (z) + t1δV1(z) + t2δV2(z) = V (z) + t1V (z) + t2 ln |λ− z|.
Since t1 = N−n

n
and t2 = − 1

n
are both small of order O(N−1), we will expand F in Taylor’s

series:

F [V(z); n] = F [V (z); n] + t1∂1F + t2∂2F + 1
2 t

2
1 ∂11F + t1t2∂12F + 1

2 t
2
2 ∂22F + · · ·

all the derivatives being taken at the point t1 = t2 = 0.
This will give

Pn(λ) ∼ en∂2F0 e(N−n)∂12F0 e− 1
2 ∂22F0

θ3(nx + (N − n)∂1x − ∂2x)

θ3(nx + (N − n)∂1x)
(1 + O(N−1)). (4.16)

Now, let us compute the derivatives ofF0 and x = xc with respect to t1 and t2. The method
proceeds similarly to section 3.1.

4.2.1. Derivatives of F0 with respect to t1 and t2. Using (4.15) with (4.13):

∂F0

∂t2
= 1

2iπ

∮
ω(z) ln (z− λ) dz.

After integration by part, the pole in (z − λ) picks a residue, and the result is a primitive of
ω(λ):

∂F0

∂t2
=
∫ λ

λ0

ω(z) dz. (4.17)

The lower bound of integration λ0 is to be chosen such that en∂2F0 ∼λ→∞ λn; i.e.

ln λ0 =
∫ ∞

λ0

(
ω(z)− 1

z

)
dz. (4.18)

In order to compute the second derivatives ∂12F0 and ∂22F0, we will need to differentiate
ω(z) with respect to t1 and t2.

4.2.2. Derivatives of ω(z) with respect to t1 and t2. The resolvent ω(z) computed for the
potential V(z) takes the form

ω(z) = 1
2

(
V ′(z)−M(z)

√
σ(z)

)
(4.19)

where M(z) is analytic. Note that when V ′(z) has a pole in z = λ, M(z) may have a pole too.
ω(z) obeys a linear equation:

ω(z + i0) + ω(z− i0) = V ′(z) for z ∈ [a, b] ∪ [c, d]. (4.20)
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Thus its derivatives obey linear equations as well:

∂1ω(z + i0) + ∂1ω(z− i0) = δV ′
1(z) = V ′(z) (4.21)

∂2ω(z + i0) + ∂2ω(z− i0) = δV ′
2(z) = 1

z− λ
. (4.22)

• ∂ω1. The solution of (4.21) is

∂1ω(z) = ω(z)− f (z)√
σ(z)

(4.23)

where f (z) is analytic in z. The boundary conditions (2.18) imply that f (z) ∼ zwhen z → ∞
and f has no pole, thus f (z) is a polynomial of degree one:

∂ω(z)

∂t1
= ω(z)− z− z0√

σ(z)
(4.24)

z0 is determined as a function of a, b, c, d by the derivative of (2.30) with respect to t1:∫ c

b

dz
z− z0√
σ(z)

= 0. (4.25)

It can be checked that in term of elliptic theta functions we have (see appendix A, or [26])

z− z0√
σ(z)

= d

dz
ln
θ1(u(z) + u∞)
θ1(u(z)− u∞)

(4.26)

and thus

∂ω(z)

∂t1
= ω(z)− d

dz
ln
θ1(u(z) + u∞)
θ1(u(z)− u∞)

. (4.27)

• ∂ω2. Note that the t2 source term is the primitive of the ελ source term of (3.2), and that

d

dz

∂ω(z)

∂t2
= ∂ω(z)

∂ελ
= − 1

n2

∂2F

∂εz∂ελ
= ωc(z, λ) (4.28)

so, ∂ω/∂t2 has already been computed in (3.8). The second derivative ∂22F corresponds to
z = λ,

∂22F0 = ln
√
σ(λ) + 2 ln (θ1(u(λ)− u∞)). (4.29)

4.2.3. Derivatives of x. Recall that

x =
∫ b

a

ρ(λ) dλ = 1

2iπ

∫ b

a

M(z)
√
σ(z) dz (4.30)

using (4.27) we obtain

∂x

∂t1
= x +

1

2iπ

∫ b

a

z− z0√
σ(z)

dz = x + 2u∞. (4.31)

Similarly, from (4.28) and (3.18) or (3.31) (or less tediously, taking the primitive of (3.14)),
we obtain

∂x

∂t2
= −u(λ) + u∞. (4.32)
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4.3. Final result

4.3.1. Case λ �∈ [a, b] ∪ [c, d]. Eventually, inserting (4.17), (4.27), (4.29), (4.31), (4.32)
into (4.16) we obtain

Pn(λ) =
λ/∈[a,b]∪[c,d]

√
u′(λ)pn(u(λ)) eN

∫ λ
λ0
ω (4.33)

where

pn(u) = Cn

θ3(Nx + 2(N − n)u∞ + u− u∞)θ1(2u∞)
θ3(Nx + 2(N − n)u∞)θ1(u− u∞)

(
θ1(u + u∞)
θ1(u− u∞)

)n−N
(4.34)

and Cn is a normalization such that Pn ∼ λn for λ → ∞.

Cn =
√

2KAn−N+1 with A = − 1

2K

θ ′
1(0)

θ1(2u∞)
and K =

∫ b

c

dz√
σ(z)

A = −1

4
|d − a − c + b| θ3(0)

θ3(2u∞)
.

(4.35)

Note that (4.33) is unchanged under u → u + 1 and u → u + τ . Indeed, a shift
u → u + τ amounts to a non-trivial circle around the cut [c, d]. Thus

∫
ω is shifted by

−2iπ
∫ d
c
ρ = −2iπ(1 − x), and eN

∫
ω receives a phase e2iπNx . In the same time, the θ

functions receive phase factors: θ(v + τ) = θ(v) e−2iπ(v+τ/2). One can easily check that the
total phase shift is 0.

4.3.2. Case λ ∈ [a, b] ∪ [c, d]. Expression (4.34) has been derived by a saddle-point
approximation of (4.12) when λ does not belong to [a, b] ∪ [c, d]. When λ lies on the cut
[a, b] ∪ [c, d], equation (4.12) actually has two saddle points, contributing to the same order.
They correspond to the two determinations of the square root ±√

σ(λ). The asymptotic
expression for the orthogonal polynomial is then given by a sum of two terms:

Pn(λ) =
λ∈[a,b]∪[c,d]

C
√
u′ [pn(u) e−iNπζ(λ) + ipn(−u) eiNπζ(λ)

]
e

1
2NV (λ) (4.36)

where ζ(λ) = ∫ λ
d
ρ(z) dz and

C = e− 1
2N(V (λ0)+

∫ d
λ0
M(z)

√
σ(z) dz) = dNe− 1

2NV (d)e−N ∫∞
d
(ω(z)−1/z) dz. (4.37)

Figure 2. Typical behaviour of the wavefunction.
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Figure 3. Deformation of the contour integral.

To summarize, when λ /∈ [a, b] ∪ [c, d], the wavefunction ψn(λ) = Pn(λ) e−NV/2 decays
exponentially, and within the support [a, b] ∪ [c, d], it oscillates at a frequency of order N .

4.3.3. Check of the orthogonality. For completeness, let us check that the functions (4.33)
are indeed orthogonal (at leading order in N−1). Let us compute the integral∫ ∞

−∞
dλPn(λ)Pm(λ) e−NV (λ).

The contributions of the integral along ]−∞, a] ∪ [b, c] ∪ [d,∞[ are exponentially small and
do not contribute at leading order.

Along [a, b] ∪ [c, d], we use expression (4.36) and get a sum of four terms:

C2
∫

dλ u′(λ)

(
ipn(u)pm(−u) +ipn(−u)pm(u)

+pn(u)pm(u) e−2iNπζ(λ) −pn(−u)pm(−u) e2iNπζ(λ)

)
(4.38)

Since the two last terms have fast oscillations of frequency N , they are suppressed as O(1/N).
The leading contribution is thus given by the two first terms of (4.38), which can be

rewritten as integrals in the u plane along the contour depicted in figure 3(a):∫
PnPme−NV = icnm

∫
du

θ3(xn + u− u∞)θ3(xm − u− u∞)
θ3(xn)θ3(xm)θ1(u− u∞)θ1(u + u∞)

×
(
θ1(u + u∞)
θ1(u− u∞)

)n−m
+ (u → −u) (4.39)
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where xn and cnm are short notation for

xn = Nx + 2(N − n)u∞ and cnm = C2CnCm.θ
2
1 (2u∞) (4.40)

If n > m we may deform the contour to a circle around the point −u∞ (figure 3(b)), and
the integral vanishes since there is no pole, while if m > n we deform the contour to a circle
around +u∞ (figure 3(c)). Therefore, the integral vanishes for n �= m.

When n = m, the integral picks a residue:∫
dλPnPme−NV (λ) = hnδnm (4.41)

with (C, cnm, A, xn are defined in (4.35), (4.40), (4.37))

hn = cnn
4π

θ1(2u∞)θ ′
1(0)

θ3(xn+1)

θ3(xn)
= −4πC2 θ3(xn+1)

θ3(xn)
A2(n−N+1/2). (4.42)

4.3.4. Recurrence equation. It is well known that the orthogonal polynomials satisfy a
recurrence equation of the form [2, 21]

λPn(λ) = Pn+1(λ) + βnPn(λ) + αnPn−1(λ). (4.43)

Here, we find that (divide (4.43) by Pn, and match the poles on both sides)

αn = hn

hn−1
= A2 θ3(xn+1)θ3(xn−1)

θ2
3 (xn)

(4.44)

which can be rewritten more compactly as

αn = 1
16

(
((d − a)− (c − b))2 + 4(d − a)(c − b) cn2 (xn + 1

2 )
)
. (4.45)

By taking u = 0 in (4.43) we obtain βn:

βn − d = A

[
θ3(xn+3/2)θ3(xn)

θ3(xn+1)θ3(xn+1/2)
+
θ3(xn+1)θ3(xn−1/2)

θ3(xn)θ3(xn+1/2)

]
(4.46)

which can be rewritten more compactly as

βn = a + d + (c − b)

2
− (c − b)

d − b

c − b + (d − c)/[cn2 xn − u∞ + 1
2 )]

. (4.47)

The sequences αn and βn are thus quasi-periodic in n. It is interesting to recall that the
behaviour of these coefficients has been extensively studied (mainly by numerical methods)
by several authors in the early 1990s [25]. The general conclusion was that in the multi-cut
case the general behaviour of the recursion coefficients was ‘chaotic’ in n (and regular or
quasi-periodic only in some special cases). It is clear from our expressions that in the two-cut
case the behaviour is always periodic or quasi-periodic and never chaotic (in the mathematical
sense). This is, in fact, true even if the number of cuts is larger than two (see appendix C).

In the symmetric case, x = 1
2 and u∞ = 1

4 , we have xn = n/2 mod 1, so that we recover
βn = 0 and αn = 1

4 (a − (−1)nb)2.
In the general case, αn and βn vary along a periodic curve, between two extrema, given by

1
16 (d − a − (c − b))2 � αn � 1

16 (d − a + (c − b))2

1
2 (d + a)− 1

2 (c − b) � βn � 1
2 (d + a) + 1

2 (c − b).

Similarly to the one-cut case, one may relate αn to square width of the distribution of
eigenvalues, and βn to the centre of the distribution.
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4.4. The kernel K(λ,µ)

We can now evaluate the kernel K(λ,µ) according to (4.10). Let us note u = u(λ) and
v = u(µ) and we assume λ,µ ∈ [a, b] ∪ [c, d]

K(λ,µ) ∼ C2
√
u′v′

NhN−1

∑
ε,η=±1

√
εηpN(εu)pN−1(ηv) e−εN iπζ(λ)e−ηN iπζ(µ) − (u → v)

(λ− µ)
(4.48)

which can be rewritten as a sum of eight terms

K(λ,µ) = cN,N−1

hN−1θ3(xN)θ3(xN−1)

√
u′v′

N(λ− µ)

×
∑

ε,η,κ=±1

κ
√
εη
θ3(Nx + εu− κu∞)θ3(Nx + ηv + κu∞)

θ1(εu− κu∞)θ1(ηv + κu∞)
e−N iπ(εζ(λ)+ηζ(µ)).

(4.49)

We will see below that not all the terms contribute to the same order.

4.4.1. Regime |λ − µ| ∼ O(1/N). The eight terms of (4.49) can be rewritten as four
combinations of the type

sin (Nπ(ζ(λ)± ζ(µ)))
f (u, v)∓ f (v, u)

N(λ− µ)

and

cos (Nπ(ζ(λ)± ζ(µ)))
g(u, v)− g(v, u)

N(λ− µ)
.

In the limit |λ − µ| small, i.e. |u − v| small, the terms with a cosine will be proportional to
derivatives of g(u, v), and there will be an overall 1/N factor. Similarly, the term with a sine
and a + sign will be proportional to a derivative of f (u, v) and will be of order 1/N . Only
the term proportional to sinNπ

∫ µ
λ
ρ(z) dz can balance the 1/N factor, and is dominant in the

short range regime. After calculation we obtain

K(λ,µ) ∼
|λ−µ|∼O(1/N)

sinNπ
∫ µ
λ
ρ(z) dz

Nπ(λ− µ)
. (4.50)

As expected we have

K(λ, λ) = ρ(λ) (4.51)

and we recover the universal short-range correlation function

ρ(λ, µ) ∼ ρ(λ)ρ(µ)

(
1 −

(
sinNπρ(λ)(λ− µ)

Nπρ(λ)(λ− µ)

)2
)
. (4.52)

4.4.2. Long-range regime, smoothed oscillations. When |λ−µ| ∼ O(1), K(λ,µ) has high-
frequency oscillations, and only a smoothed correlation function obtained by averaging the
oscillations can be observed.

Recall that the connected two-point correlation function is related to K2 by (4.9):

ρ2c(λ, µ) = −K(λ,µ)2 (4.53)

with K(λ,µ) given by (4.49).
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Smoothing out the oscillations amounts to kill all terms containing some eiNπζ in the
square of equation (4.49), we thus have

K(λ,µ)2 = −2u′v′c2
NN−1

h2
N−1θ

2
3 (xN)θ

2
3 (xN−1)N2(λ− µ)2

∑
ε,η,κ1,κ2=±1

κ1κ2
{
θ3(Nx + εu− κ1u∞)

×θ3(Nx − εu− κ2u∞)θ3(Nx + ηv + κ1u∞)θ3(Nx − ηv + κ2u∞)
}

×{
θ1(εu− κ1u∞)θ1(−εu− κ2u∞)θ1(ηv + κ1u∞)θ1(−ηv + κ2u∞)

}−1
. (4.54)

Using that (see appendix A and [26–28])

λ− µ = −2A
θ1(u− v)θ1(u + v)θ2

1 (2u∞)
θ1(u− u∞)θ1(u + u∞)θ1(v − u∞)θ1(v + u∞)

(4.55)

we obtain (εij = −εji = ±1)

K(λ,µ)2 = 2u′v′θ ′2
1 (0)

N24π2θ4
3 (Nx)θ

2
1 (2u∞)

(
θ1(u− u∞)θ1(u + u∞)θ1(v − u∞)θ1(v + u∞)

θ1(u− v)θ1(u + v)

)2

×
∑

i,j,k,l=±1

(εij εkl + εilεkj )

×θ3(Nx + u− iu∞)θ3(Nx − u− ku∞)θ3(Nx + v −ju∞)θ3(Nx − v − lu∞)
θ1(u− iu∞)θ1(−u− ku∞)θ1(v − ju∞)θ1(−v − lu∞)

.

(4.56)

We see that (4.56) has no pole when u = ±u∞, it can have (double) poles only when
u = ±v. Thus, equation (4.56) can be rewritten in terms of Weirstrass functions of u + v and
u− v:

K(λ,µ)2 = − 1

2N2π2
u′v′ (C1℘(u− v) + C2℘(u + v)− 2S).

Taking u = v and u = −v in (4.56), we find that the residues are C1 = C2 = 1, and taking a
particular value of u and v, we find the constant S, equal to what we had in (3.31)

K(λ,µ)2 = − 1

2N2π2
u′v′ (℘(u− v) + ℘(u + v)− 2℘(Nx + 1

2τ)
)

(4.57)

and we recover the result (3.31) found in section 3.6.

5. Conclusions

In this paper, we have solved the puzzle raised by [13, 15] and understood why the naive
mean-field method [11] and the orthogonal polynomial ansatz [13, 14] approach used in the
symmetric case disagree.

We have proven here that this effect has nothing to do with a Z2 symmetry breaking, as was
sometimes assumed [13], it is general as soon as the support of the density is not connected.

The apparent paradox comes from the fact that when the support of eigenvalues is not
connected, the free energy admits no large-N expansion in powers of 1/N2 (topological
expansion [10]). This means that the free energy in the multi-cut case is not given by a
topological expansion, i.e. the sum of diagrams with a weightNχ (χ is the Euler characteristic
of the diagram).
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The explanation lies in the discreteness of the number of eigenvalues. For instance, in the
symmetric two-cut case, the classical approach assumes that the minimum of the free energy is
reached when one half (x = 1

2 ) of the eigenvalues are in each cut. Obviously, this minimum is
never reached when the total number of eigenvalues is odd, and, in general, the result depends
on the fractional part of Nx.

At leading order in N only, the free energy is correctly given by the classical saddle-point
limit [11, 19], but the first order in N is not sufficient to determine the two-point (or higher)
correlation function.

Here we have computed explicitly the two-point connected correlation function. It
contains a universal part depending only on the number of cuts, which was obtained by [11],
and contains in addition, a non-universal term quasiperiodic in N [17, 25].

Let us stress that our calculation holds for any potential, not necessarily symmetric, and
it can also be generalized to a potential with complex coefficients (appendix B), and to an
arbitrary number of cuts (appendix C).

We have also reobtained directly the asymptotic expressions for the orthogonal
polynomials [17], which allows in principle through the Darboux–Christoffel theorem
(equation (4.10)) to compute any correlation function of any number of eigenvalues in the
short- or long-range domain (and one can smooth it afterwards).

The orthogonal polynomial approach may in turn be used for other random matrix
ensembles, and it would be interesting to apply our results to orthogonal or symplectic
ensembles [2].
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Appendix A. Topological expansion at fixed x

In this appendix we explain in detail how the perturbative expansion is organized in a topological
expansion for a two-cut model, provided that the proportion of eigenvalues in each well is fixed.
For simplicity let us consider the (properly normalized) symmetric quartic potential

V (z) = 1
8 (z

2 − z2
0)

2 (A.1)

(but the argument is of course general). From subsection 2.2.2 we consider the two-matrix
integral∫

dn1
[M1]

∫
dn2

[M2] exp
{−N Tr (V (M1))−N Tr (V (M2))

+2 Tr (ln (M1 ⊗ Id − Id ⊗M2))
}

(A.2)

where the size of the Hermitian matrices M1 and M2 are, respectively, n1 = xN and
n2 = (1 − x)N , and where their EVs are concentrated around the two minima −z0 and
z0, respectively. To construct the perturbative expansion we introduce the fiducial expansion
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Figure A1. Schematic topology of diagrams generated by perturbation
theory at fixed ratio x. For this example h = 4 and χ = −6.

parameter g by shifting V → V/g (g will be set to one at the end). Then we can expand M1

and M2 around their classical minima

M1 = −z0Id − z−1
0

√
g/NA M2 = z0Id + z−1

0

√
g/NB. (A.3)

The action reads then

Tr

[
1

2
A2 +

1

2z2
0

√
g

N
A3 +

1

8z4
0

g

N
A4

]
+ Tr

[
1

2
B2 +

1

2z2
0

√
g

N
B3 +

1

8z4
0

g

N
B4

]

−2n1n2 log(−2Z0)− Tr
[

log

(
Id ⊗ Id +

1

2z2
0

√
g

N
(A⊗ Id + Id ⊗ B)

)]
.

(A.4)

The first two terms generates standard planar graphs for the two matrices A and B with three-
and four-point vertices. Expanding the log of the last term we generates interaction terms
between the two matrices of the form( g

N

)(k1+k2)/2
tr(Ak1) tr(Bk2). (A.5)

If k2 = 0 (respectively, k1 = 0) this gives O(g) counterterms to the pure A (respectively, B)
action of the form

gk/2

Nk/2−1
tr(Ak). (A.6)

If both k are non-zero, this gives O(g) contact terms between the A-graphs and the B-
graphs. Indeed, in terms of Feynmann graphs, the perturbative expansion can be reorganized
in (orientable) fat A-graphs and fat B-graphs, which are allowed to be in contact A − B at
one or several points (A− B hetero-contacts only being allowed). It is easy to check that the
power ofN of a given graph is still its Euler characteristics χ = 2(1−h), where h is the genus
of the surface (see figure A1).

Hence, for fixed ratio x = n1/N , the perturbative expansion in g can still be organized
in a topological expansion, provided of course than at a fixed order in N (i.e. for graphs with
a fixed Euler characteristics), the perturbative series in g is convergent up to g = 1. This
is ensured as long as we do not reach a critical point as we increase g. In our double-well
potential case this would occur only if at fixed x the EVs in one of the wells flow over the wall
into the second well. This would contradicts the initial condition that we have chosen, which
is that x and the potential V are such that the large-N mean-field solution is a two-intervals
solution.
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Appendix B. A few useful identities on elliptic functions

Here we collect a few useful identities on elliptic functions used through the paper. For details
see [26–28]. We start from

σ(λ) = (λ− a)(λ− b)(λ− c)(λ− d) a < b < c < d (B.1)

and the map from the complex plane to the torus

u(λ) = 1

2K

∫ λ

d

dz√
σ(z)

(B.2)

where the half-period K is

K =
∫ c

b

dz√|σ(z)| = 2√
(c − a)(d − b)

K[m] = πθ2
3 (0|τ)√

(c − a)(d − b)
(B.3)

and K[m] is the standard complete elliptic integral [26–28], with the modulus m equal to the
biratio of the four points a, b, c, d:

m = (d − a)(c − b)

(d − b)(c − a)
(B.4)

m is related to the modular parameter τ of the torus by

m = eiπτ θ
4
3 (

1
2τ |τ)

θ4
3 (0|τ) and conversely τ = i

K[1 −m]

K[m]
(B.5)

where we have used the Jacobi theta functions

θ1(z|τ) = θ1(z) = −i
∑

r∈Z+1/2

(−1)rqr
2
e2iπrz with q = eiπτ (B.6)

and

θ3(z|τ) = θ3(z) = q1/4eiπzθ1(z + 1
2 + 1

2τ |τ). (B.7)

With this mapping u(λ) between the λ complex plane and the periodic rectangle of sides
(1, τ ), we have

u(d) = 0 u(a) = 1
2 u(b) = 1

2 (1 + τ) u(c) = 1
2τ u(∞) = u∞. (B.8)

The inverse mapping can be written in terms of theta functions

λ− d = −θ ′
1(0)

2K

θ2
1 (u)θ1(2u∞)

θ1(u + u∞)θ1(u− u∞)θ2
1 (u∞)

(B.9)

√
σ(λ) = θ ′2

1 (0)

4K2

θ1(2u)θ1(2u∞)
θ2

1 (u− u∞)θ2
1 (u + u∞)

(B.10)

and in terms of the usual trigonometric elliptic functions sn, cn, dn [26–28] that we normalize
to have periods 1 and τ , i.e.

sn(u) = sn(2K[m]u|m) dn(u) = dn(2K[m]u|m) . . . (B.11)
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one has

sn2(u)

sn2(u∞)
= λ− d

λ− c

cn2(u)

cn2(u∞)
= λ− a

λ− c

dn2(u)

dn2(u∞)
= λ− b

λ− c
(B.12)

λ− c = (d − c)
1

1 − sn2 (u)/ sn2(u∞)
λ− b = (d − b)

dn2 (u)

1 − sn2 (u)/ sn2 (u∞)
(B.13)

λ− a = (d − a)
cn2 (u)

1 − sn2 (u)/ sn2 (u∞)
λ− d = (d − c)

d − a

c − a

sn2 (u)

1 − sn2 (u)/ sn2 (u∞)

(B.14)

√
σ(λ) = (d − c)(d − a)

√
d − b

c − a

sn (u) cn (u) dn (u)(
1 − sn2 (u)/ sn2 (u∞)

)2 (B.15)

and u∞ is related to a, b, c, d by any of the following relations:

sn2(u∞) = c − a

d − a
cn2(u∞) = d − c

d − a
dn2(u∞) = d − c

d − b
. (B.16)

Appendix C. Complex potentials

The case of complex potentials, that is to say of a polynomial potential V (λ) with complex
coefficients, is interesting for some applications of the matrix models to two-dimensional
gravity and when studying their connections with integrable hierarchies. In this case, the mean-
field large-N solution is known to be given by a continuous distribution of the eigenvalues along
arcs in the complex plane [29].

In this appendix we show that our results are only slightly modified in this case.
In the two-cut case, we can repeat the analysis of section 2. We fix x = n1/N (the

proportion of EV in the first cut). The resolvent is still of the form (2.28), with the polynomial
M and the end points a, b, c, d determined by the constraints (2.18) and (2.29), but they are
no more real, in general, as well as the resulting mean-field free energy F0(x).

If we now repeat the calculation of section 2.2.3 we cannot use a saddle-point
approximation for the sum over n1 by expanding F0(x) around the saddle point x0 which
is the true extremum of F0.

∂F0

∂x
(x0) = 0. (C.1)

Indeed, this extremum is at a finite non-zero distance of the real axis, i.e. Im(x0) = O(1),
while the method of section 2.2.3 is valid only if Im(x0) = O(1/N). However, since N is
integer, we can expand F0 around any xk , provided that

F ′
0(xk) = 2iπ

k

N
k ∈ Z (C.2)

since the dangerous oscillating term e−N2(x−xk)F ′
0(xc) is then a constant for x = n/N , n ∈ Z.

Therefore, as in [29] we have to consider the real pseudo-saddle point xc such that

Re(F ′
0(xc)) = 0 with Im(xc) = 0 (C.3)

and denote

Ec = 1

2iπ
F ′

0(xc) = 1

2π
Im(F ′

0(xc)). (C.4)
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We expand F0 around some xk defined by equation (C.2) and such that

xk − xc = O(N−1) (C.5)

and we obtain for the total free energy (by exactly the same calculation as in section 2.2.3)

F = N2F0(xk)− ln (θ3(Nxk)) + F1(xc) + 1
2 ln

(
2πF ′′

0 (xc)
)

+ O(N−2) (C.6)

where θ3 is the theta function with modular parameter

τ = 2iπ

F ′′
0 (xc)

. (C.7)

Only the first two terms are important for calculating the two-point functions and the orthogonal
polynomials in the large-N limit. This leading term does not depend on k. Indeed, we have

F ′
0(xk)− F ′

0(xc) = (xk − xc)F
′′
0 (xc) + O(N−1) (C.8)

hence

(xk − xc) = 1

N
τ(k −NEc) + O(N−2) (C.9)

and using the periodicity relations of θ3 we can rewrite the leading term for the free energy as

N2F0(xk)− ln (θ3(Nxk)) = N2F0(nc/N)− iπ

τ
u2
c − ln (θ3(uc)) (C.10)

with

nc = E[Nxc] uc = [Nxc] − τ [NEc] (C.11)

where E[u] is the integer part of u (the largest integer smaller than u) and [u] = u − E[u] is
the fractional part of u. This does not depend on k up to negligible terms of order O(N−1)

(provided that condition (C.5) for k holds).
One can now repeat the calculation of section 3 for the two-point function. Nothing

is changed but we simply have to replace xc by xk in the intermediate steps and to use
equation (C.9) at the end of the calculation. This amounts to replace the xc in the elliptic
function sn2 by xc − τEc. The final result for the two-point resolvent is

ωc(λ, µ) = − 1

4(λ− µ)2

[(
1 −

√
(λ− a)(λ− b)(µ− c)(µ− d)

(µ− a)(µ− b)(λ− c)(λ− d)

)
+ (λ ↔ µ)

]

− (c − a)(d − b)

4
√
σ(λ)

√
σ(µ)

sn2(N(xc − τEc) + 1
2 ). (C.12)

Similar results holds for the orthogonal polynomials. We simply have to consider the
end-points a, b, c, d for the mean-field real parameter xc and to make the replacement

Nxc → N(xc + τEc) (C.13)

in the elliptic functions involving Nxc. In any case these terms depend only on the fractional
parts of Nxc and of NEc.

A final interesting remark on the periodicity properties of the non-universal term
sn2(N(xc + τEc)) can be made. From the definition (C.4) Ec corresponds to a ‘phase shift’
between the two arcs where the density of EV is non-zero.

Ec = 1

2iπ
F ′

0(xc) = !1 − !2

2iπ
(C.14)

where N!α is the (constant) effective potential on the arc α. The two periods 1 and τ of the
sn2 function correspond, respectively, in term of eigenvalues to (a) transfer a single EV from
the first arc to the second one (δNx = ±1), (b) or to shift the phase between the two arcs by
2π (δNEc = ±1).
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Appendix D. Multicut case

Consider now a support of eigenvalues split into s intervals:

C = C1 ∪ · · · ∪ Cs . (D.1)

Let ni be the number of eigenvalues in each Ci , and xi = ni/N the occupation ratio, which
we denote collectively as a vector

xi =
∫

Ci
dλ ρ(λ) �x = (x1, . . . , xs−1). (D.2)

Note that only s − 1 of them are independent since x1 + · · · + xs = 1.
As in the two-cut case (equation (2.36)), the free energy at fixed �n admits a topological

large-N expansion

F [V ; �n] = N2F0[V ; �x] + N0F1[V ; �x] + O(1/N2) (D.3)

and as in (2.38), the partition function can be written as a sum over �n
Z = e−F =

∑
�n

e−F [V,�n]. (D.4)

The sum is dominated by the vicinity of the extremum �xc of F0[V ; �x]:

Z ∼
∑

�n
e−N2(F0[V, �xc]+iπ(�n/N−�xc)·τ−1(�n/N−�xc)) where

∂

∂ �x F0(�x)
∣∣∣∣
�x=�xc

= �0 (D.5)

τ is the s − 1 × s − 1 matrix defined by

τ−1
ij = 1

2iπ

∂2F0

∂xi∂xj

∣∣∣∣
�x=�xc

. (D.6)

Then, the summation over �n yields

Z ∼ e−N2F0[V,�xc]θ(N �xc|τ) (D.7)

where θ(�u|τ) is Riemann’s theta function [30] in genus s − 1:

θ(�u|τ) = θ(�u) =
∑

�n
e−iπ(�n−�u)·τ−1(�n−�u) =

∑
�n

eiπ �n·τ �ne−2iπ �n·�u (D.8)

where τ is an s − 1 × s − 1 matrix, �u is an s − 1 component vector, and �n is a vector with
integer coordinates.

The θ function obeys the relations (�k being an arbitrary integer vector):

θ(�u + �k) = θ(�u) θ(�u + τ �k) = e−iπ(2�u·�k+�k·τ �k)θ(�u) θ(−�u) = θ(�u). (D.9)

Eventually, the free energy at leading orders in N is

F ∼ N2

[
F0[V, �xc] − 1

N2
ln θ(N �xc|τ) +

1

N2
F1(�xc) + · · ·

]
(D.10)

It is now straightforward but lengthy to rederive the two-point correlation function and
the orthogonal polynomials from (D.10). One needs to differentiate (D.10) with respect to
variations of the potential as in (3.3) or (4.16), and express the hyperelliptical functions involved
in the calculation through prime forms (hyperelliptical generalization of the θ1 function) [30].
One should thus obtain expressions similar to those of [17].
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